skip to main content


Search for: All records

Creators/Authors contains: "Bishop, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. null (Ed.)
  3. Abstract

    The neutron inelastic scattering of carbon-12, populating the Hoyle state, is a reaction of interest for the triple-alpha process. The inverse process (neutron upscattering) can enhance the Hoyle state’s decay rate to the bound states of12C, effectively increasing the overall triple-alpha reaction rate. The cross section of this reaction is impossible to measure experimentally but has been determined here at astrophysically-relevant energies using detailed balance. Using a highly-collimated monoenergetic beam, here we measure neutrons incident on the Texas Active Target Time Projection Chamber (TexAT TPC) filled with CO2gas, we measure the 3α-particles (arising from the decay of the Hoyle state following inelastic scattering) and a cross section is extracted. Here we show the neutron-upscattering enhancement is observed to be much smaller than previously expected. The importance of the neutron-upscattering enhancement may therefore not be significant aside from in very particular astrophysical sites (e.g. neutron star mergers).

     
    more » « less
  4. Abstract

    Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.

     
    more » « less